Extensions 1→N→G→Q→1 with N=C2 and Q=C42.6C22

Direct product G=N×Q with N=C2 and Q=C42.6C22
dρLabelID
C2×C42.6C2264C2xC4^2.6C2^2128,1636


Non-split extensions G=N.Q with N=C2 and Q=C42.6C22
extensionφ:Q→Aut NdρLabelID
C2.1(C42.6C22) = C23.29C42central extension (φ=1)64C2.1(C4^2.6C2^2)128,461
C2.2(C42.6C22) = C42.45Q8central extension (φ=1)128C2.2(C4^2.6C2^2)128,500
C2.3(C42.6C22) = C23.21M4(2)central extension (φ=1)64C2.3(C4^2.6C2^2)128,582
C2.4(C42.6C22) = C42.61Q8central extension (φ=1)128C2.4(C4^2.6C2^2)128,671
C2.5(C42.6C22) = C42.90D4central stem extension (φ=1)64C2.5(C4^2.6C2^2)128,302
C2.6(C42.6C22) = C42.91D4central stem extension (φ=1)64C2.6(C4^2.6C2^2)128,303
C2.7(C42.6C22) = C42.Q8central stem extension (φ=1)64C2.7(C4^2.6C2^2)128,304
C2.8(C42.6C22) = C42.92D4central stem extension (φ=1)64C2.8(C4^2.6C2^2)128,305
C2.9(C42.6C22) = C42.21Q8central stem extension (φ=1)64C2.9(C4^2.6C2^2)128,306
C2.10(C42.6C22) = C42.95D4central stem extension (φ=1)64C2.10(C4^2.6C2^2)128,530
C2.11(C42.6C22) = C42.23Q8central stem extension (φ=1)128C2.11(C4^2.6C2^2)128,564
C2.12(C42.6C22) = C42.25Q8central stem extension (φ=1)128C2.12(C4^2.6C2^2)128,575
C2.13(C42.6C22) = (C2×C8).195D4central stem extension (φ=1)64C2.13(C4^2.6C2^2)128,583
C2.14(C42.6C22) = C42.27Q8central stem extension (φ=1)128C2.14(C4^2.6C2^2)128,672

׿
×
𝔽